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We derive, by means of an extended Gutzwiller wave function and within the Gutzwiller approximation, the
phase diagram of the Kondo lattice model. We find that generically, namely, in the absence of nesting, the
model displays an f-electron Mott localization accompanied by a discontinuous change of the conduction-
electron Fermi surface as well as by magnetism. When the noninteracting Fermi surface is close to nesting, the
Mott localization disentangles from the onset of magnetism. First the paramagnetic heavy-fermion metal turns
continuously into an itinerant magnet—the Fermi surface evolves smoothly across the transition—and after-
ward Mott localization intervenes with a discontinuous rearrangement of the Fermi surface. We find that the
f-electron localization remains even if magnetism is prevented and is still accompanied by a sharp transfer of
spectral weight at the Fermi energy within the Brillouin zone. We further show that the Mott localization can
be also induced by an external magnetic field, in which case it occurs concomitantly with a metamagnetic
transition.
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I. INTRODUCTION

The physics of heavy-fermion compounds remains a fas-
cinating and challenging issue within strongly correlated ma-
terials. Recently, considerable experimental and theoretical
interest has focused on the physical behavior across the mag-
netic quantum phase transition that is traditionally expected
to occur when the Ruderman-Kittel-Kasuya-Yosida �RKKY�
interaction overwhelms Kondo screening.1 This transition is
induced experimentally by external parameters such as
chemical composition, pressure, or magnetic field, �see for
instance Refs. 2 and 3 as well as references therein� and is
commonly accompanied by topological changes of the Fermi
surface4–8 and anomalous behavior of various transport and
thermodynamic quantities.2,3 The theoretical debate on this
subject has so far mainly followed two different directions.3

One ascribes the changes of the Fermi surface to an
f-electron Mott localization,9 which is assumed to occur con-
comitantly with magnetism as well as with the appearance of
transport and thermodynamics anomalies.10–13 The alterna-
tive proposal assumes that magnetism is predominantly an
instability of an itinerant phase;14,15 hence, the Fermi-surface
changes arise simply by the spin polarization of dispersing
bands14,15 and the anomalous behavior by critical magnetic
quantum fluctuations.16 This issue was very recently ad-
dressed theoretically in the periodic Anderson model by De
Leo et al.17,18 using a cluster extension of dynamical mean-
field theory �CDMFT�. Upon decreasing the hybridization
between f orbitals and conduction electrons, a weak first-
order phase transition from a heavy-fermion paramagnet to
an itinerant antiferromagnet has been found. Remarkably,
when these authors forced CDMFT not to break spin SU�2�
symmetry and follow the metastable paramagnetic solution,
they found an orbital-selective Mott localization—a
pseudogap opens in the f-electron spectral function at the
chemical potential, although low-energy spectral weight re-
mains within the Mott-Hubbard gap19,20—for a hybridization
between f and conduction electrons almost coincident with

the value at which �allowing for magnetism� the antiferro-
magnetic transition occurs. This result suggests that the mag-
netic phase transition masks an incipient Mott localization of
the f electrons, which could become visible above the Néel
temperature or by suppressing antiferromagnetism. A
complementary attempt was almost contemporarily per-
formed by Watanabe and Ogata.21 These authors analyzed by
a variational Monte Carlo �VMC� technique a Gutzwiller
wave function for a Kondo lattice model �KLM� in a two-
dimensional square lattice. The variational phase diagram as
a function of the Kondo exchange depends nontrivially on
the electron density. Very close to the compensated regime
�one conduction electron per impurity spin�, upon decreasing
the Kondo exchange, there is first a second-order
paramagnetic-to-antiferromagnetic phase transition followed
by a first-order transition between two magnetic phases with
different Fermi surfaces. Moving away from the compen-
sated regime, the second-order phase transition disappears
and they found a single first-order line separating a paramag-
netic phase from an antiferromagnetic one with different
Fermi surfaces. These VMC results suggest that the magnetic
transition and the topological change of the Fermi surface are
not necessarily coincident, which has been also observed in a
very recent experiment.22 Since a variational calculation can
only access ground-state properties and not subtle dynamical
features such as an orbital-selective Mott transition, and
keeping into account the differences between the periodic
Anderson model and the Kondo lattice model, the VMC
�Ref. 21� and CDMFT �Ref. 17� results might not be incom-
patible to the other and instead describe the same physical
scenario although from two different perspectives. Should
this be the case, it would undoubtedly represent a step for-
ward in the comprehension of heavy-fermion physics. To
settle this question, one should for instance try to get closer
to the compensated regime by CDMFT and check whether
the f localization and the onset of magnetism disentangle
from each other as predicted by VMC. Alternatively, one
could carry on with variational calculations trying to uncover
features that indirectly signal the f localization. This is the
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aim of the present work. We note, by the way, that finite
average values of the hybridization between f orbitals and
conduction electrons �in the periodic Anderson model� or of
the Kondo exchange �in the Kondo lattice model� must not
be interpreted as absence of f localization in a proper varia-
tional calculation, since the hybridization or the Kondo ex-
change is part of the Hamiltonian. Therefore other quantities
must be identified that are accessible by variational calcula-
tions.

In particular, in this work we adopt a variational technique
based on a recent multiband extension23 of the so-called
Gutzwiller approximation to evaluate analytically average
values on Gutzwiller variational wave functions.24,25 This
method is not exact like VMC unless in the case of infinite-
coordination lattices. However, we have found that a varia-
tional wave function richer than that of Ref. 21 seems to
compensate for the approximation adopted to calculate aver-
age values, thus, leading to the same phase diagram as the
one obtained by VMC in the case of a two-dimensional
square lattice.21 Encouraged by this result, we have extended
the analysis of Ref. 21. Specifically, we have derived the
phase diagram forcing the wave function to remain paramag-
netic. Similar to the CDMFT calculation of Ref. 17, we have
found that a transition accompanied by a topological change
of the Fermi surface exists also in this case, although it is
masked by magnetism when we allow for it. Finally, we have
analyzed the role of a uniform magnetic field in the paramag-
netic phase and found a metamagnetic instability near the
above phase transition suggestive of the metamagnetism ob-
served experimentally.26

The plan of this paper is as follows. In Sec. II we intro-
duce the model and the variational technique. The variational
phase diagram is presented in Sec. III. In Sec. IV we discuss
the properties of the variational wave function in the para-
magnetic sector, while in Sec. V we consider the effect of a
magnetic field in connection with metamagnetism. Section
VI is devoted to concluding remarks. Finally, in the Appen-
dix we present some technical details of the variational
method employed.

II. MODEL AND THE VARIATIONAL METHOD

We consider a KLM described by the Hamiltonian

H = − t �
�RR��

�
�

�cR�
† cR�� + H.c.� + J�

R
S fR · ScR � H0 + HJ,

�1�

where cR�
† creates a conduction electron at site R with spin �

that can hop with amplitude −t to nearest-neighbor sites, S fR
is the spin-1/2 operator of the f orbital, and ScR is the
conduction-electron spin density at site R. In what follows,
we assume a bipartite lattice. To study this Hamiltonian we
introduce the following variational Gutzwiller wave func-
tion:

��� = �
R

PR��0� , �2�

where ��0� is the ground state of a noninteracting two-band
variational Hamiltonian describing hybridized c and f orbit-

als, while PR is a local operator that modifies the relative
weights of the local electronic configurations with respect to
the uncorrelated wave function. In particular, we will assume
for PR the general expression

PR = �
�,n

��n�R���,R��n,R� , �3�

where �� ,R� and �n ,R� span all electronic configurations of
the c and f orbitals at site R with the constraint that the states
�� ,R�, but not �n ,R�, have just a single f electron.

The variational wave function �2� has been widely used to
study the periodic Anderson model as well as its strong cou-
pling counterpart, which is the Kondo lattice model, within
the Gutzwiller approximation.27–32 However, in all the earlier
works the operator PR has been chosen to act only on the
f-orbital states. For instance, in the KLM that we consider,
this choice would reduce to take PR as the projector onto
singly occupied f orbitals, namely,

PR = �
�

��,R���,R� = �nfR↑ − nfR↓�2, �4�

where nfR�= fR�
† fR�. This assumption implies that the spin

correlations induced by the exchange J in Eq. �1� are only
provided by the uncorrelated wave function ��0�. The more
general form of PR, 	Eq. �3�
 which we assume in what
follows, permits to include additional correlations besides
those included in the wave function ��0�, in particular the
tendency of the conduction electrons to couple into a singlet
with the localized spins.

The variational procedure amounts to optimize both the
parameters ��n�R� as well as those that identify ��0� by
minimizing the average value of the Hamiltonian �1�. In gen-
eral this task can be accomplished only numerically, for in-
stance by means of VMC as actually done by Watanabe and
Ogata21 with the simple choice of PR as in Eq. �4�. However,
in infinite-coordination lattices many implications intervene
that allow to evaluate average values analytically.33–35 In this
work we follow an extension23 of the multiband method de-
veloped by Bünemann et al.35,36 that allows to handle with
non-Hermitian operators PR, which is generally the case
since the bra �n ,R� in Eq. �3� can have any number of f
electrons while the ket �� ,R� is forced to have only one.

We start assuming that PR is not the most general as
possible but is subject to the following two conditions:37

��0�PR
† PR��0� = 1, �5�

��0�PR
† PRCR���0� = ��0�CR���0� , �6�

where

CR� = �cR�
† cR� cR�

† fR�

fR�
† cR� fR�

† fR�
� , �7�

is the local single-particle density-matrix operator. If Eqs. �5�
and �6� are satisfied, then one can show23,35,36 that, in an
infinite-coordination lattice, the average value of Eq. �1� that
has to be minimized is
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E =
���H���

�����
= − t �

�RR���

��0�	Zcc��R�cR�
† + Zcf��R�fR�

† 


�	Zcc�
� �R��cR�� + Zcf�

� �R��fR��
 + H.c.���0�

+ J�
R

��0�PR
† S fR · ScRPR��0� . �8�

The hopping renormalization coefficients Z are obtained
through the following equations:

��0�PR
† cR�

† PRcR���0� = Zcc��R���0�cR�
† cR���o�

+ Zcf��R���0�fR�
† cR���o� , �9�

��0�PR
† cR�

† PRfR���0� = Zcc��R���0�cR�
† fR���o�

+ Zcf��R���0�fR�
† fR���o� .

�10�

Therefore the variational calculation reduces, in infinite-
coordination lattices and provided that Eqs. �5� and �6� are
satisfied, to calculate expectation values on the Slater deter-
minant uncorrelated wave function, which is analytically fea-
sible since Wick’s theorem applies. In the Appendix we show
how one can manipulate and simplify all the above expres-
sions to get manageable formulas. For finite-coordination lat-
tices the expression �8� for the variational energy is not cor-
rect anymore. However, it is common to keep using �also in
these cases� the same formula �8� with the coefficients Z
defined above—the so-called Gutzwiller approximation.24,25

Moreover, it is also common to interpret27,38 the noninteract-
ing Hamiltonian H�, see Eq. �A21� in the Appendix, whose
ground state is the optimized wave function ��0� as the
Hamiltonian of the quasiparticles within a Landau-Fermi-
liquid framework.

Before moving to the presentation of our variational re-
sults, we want to mention some important consequences of
choosing PR that acts both on the f and on the c orbitals. A
drawback of the conventional Gutzwiller wave function with
PR of Eq. �4�, which was pointed out already by Fazekas and
Müller-Hartmann in Ref. 32, is that for small J, the paramag-
netic solution gains a singlet-condensation energy that has a
Kondo-type expression �exp�−1 /J�� with � as the
conduction-electron density of states at the chemical poten-
tial. On the contrary, any magnetic solution gains local ex-
change energy of order J2�—the average value of
J�RS fR ·ScR—independent of the spatial arrangement of the
magnetic ordering. This result would remain true even for a
single impurity Kondo model and is obviously incorrect. Our
wave function partially cures this deficiency because PR is
able to induce additional spin correlations among c and f
electrons, although only locally.

We further note from Eq. �8� that the action of the
Gutzwiller operator PR effectively generates an intersite
hopping between the f electrons absent in the original
Hamiltonian �1�, which correlates different sites, hence, can
play an important role in determining the topology of the
Fermi surface as well as in stabilizing magnetic structures.
Even though our method for computing average values is not
exact in finite-coordination lattices, the more involved form

of PR of Eq. �3� with respect to Eq. �4� partly compensates
for this weakness—the variational Hamiltonian contains in-
tersite f-f and f-c hoppings—leading to results that are very
similar to those obtained by exact VMC as we are going to
show.

III. VARIATIONAL PHASE DIAGRAM

We have solved the variational problem numerically us-
ing, for numerical convenience, a flat conduction-electron
density of states with half bandwidth D as our unit of energy.
We do not expect that a more realistic density of states could
qualitatively change the phase diagram that we find. Some
technical details of the calculations are presented in the Ap-
pendix, while here we will just discuss the results.

In Fig. 1 we show the variational phase diagram as a
function of the Kondo exchange J �in units of D� versus the
conduction electron density 0	nc
1. Close to the compen-
sated regime nc=1 �one conduction electron per spin�, we do
find, similar to Watanabe and Ogata,21 two successive tran-
sitions as J /D is reduced from the heavy-fermion paramag-
netic phase. First, Nèel antiferromagnetism appears by a
second-order phase transition, see Fig. 2. Within the antifer-
romagnetic phase, a first-order phase transition further occurs
at smaller J /D, see the jump of the order parameter in Fig. 2,
accompanied by a rearrangement of the Fermi surface. This
is shown in Fig. 3, where we draw the quasiparticle �emis-
sion� spectral function at the chemical potential defined by

A�k� = −� d�A�k,��
� f���

��
, �11�

0.7
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0.8
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0.9

0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

n c

J/D
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AFh

PM

FIG. 1. �Color online� Variational phase diagram as a function
of the conduction electron density nc and of the Kondo exchange in
units of half the bandwidth, J /D. The solid line with the circles
represents a first-order line, while the dotted line is a second-order
transition. The error bars along the second-order phase-transition
line reflect the variational uncertainty of a precise location of the
continuous transition. The same problem does not arise along the
discontinuous first-order line. PM stands for paramagnetic heavy-
fermion metal, while AF stands for an itinerant antiferromagnet; the
subscripts “e” and “h” are borrowed from Ref. 21 and refer to the
electronlike �e� or holelike �h� character of the Fermi surface, see
Fig. 3.
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where f��� is the Fermi distribution function at low tempera-
ture and

A�k,�� =
�

V
�
RR�

�
�

�
n

eik�R−R���En − E0 − ����0�

�	Zcc��R�cR�
† + Zcf��R�fR�

† 
��n���n�

�	Zcc�
� �R��cR�� + Zcf�

� �R��fR��
��0� �12�

with V as the number of lattice sites. ��0� and ��n� are the
ground and excited states with energy E0 and En, respec-
tively, of the variational Hamiltonian H�, see Eq. �A21� in
the Appendix. A�k ,�� is calculated with a nearest-neighbor
hopping on a two-dimensional square lattice, though, with
variational parameters optimized using a flat density of states
at the same values of nc and J /D.

The k points where A�k ,�� is large identify the effective
Fermi surface. We note that in the paramagnetic phase, the
Fermi surface is holelike just as if the f spins do participate
the Luttinger sum rules—two bands with 1+nc	2 electrons
per site; one band is empty and the other is occupied by 1

1+nc
2 electrons. The same feature is also found beyond
the second-order phase transition. However, for J /D below
the first-order phase transition, the Fermi surface changes
topology and becomes electronlike as if the f electrons dis-
appear from the Fermi surface. Comparing the phase dia-
gram �Fig. 1� with the one obtained by VMC,21 we find that

the two agree well even quantitatively.39 In order to identify
the origin of the Fermi-surface rearrangement, it is conve-
nient to write the general expression of the variational
Hamiltonian H� 	see Eq. �A21�
 of which ��0� is the ground
state. In momentum space and within the magnetic Brillouin
zone,

H� = �
�

�
k�MBZ

�k�
† �

tcc�k Vu + tcf�k �m �Vs + �tcf� �k

Vu + tcf�k � f + tf f�k �Vs − �tcf� �k �M

�m �Vs − �tcf� �k − tcc�k Vu − tcf�k

�Vs + �tcf� �k �M Vu − tcf�k � f − tf f�k

��k�, �13�

where �k is the energy dispersion of the conduction elec-
trons,

�k�
† = �ck�

† , fk�
† ,ck+Q�

† , fk+Q�
† � ,

which is a Fermi spinor with its Hermitian conjugate being
�k�, Q as the Nèel magnetic vector, and all the Hamiltonian
parameters are variational but �k.

In Fig. 4 we plot the variational bands in the antiferro-
magnetic phase below and above the first-order phase tran-
sition. In agreement with the interpretation given by Wa-
tanabe and Ogata in Ref. 21, the bands in the
antiferromagnetic phase at low J /D can be sought as antifer-
romagnetically split c and f bands very weakly hybridized
�left panel of Fig. 5�, while those at larger J /D as strongly
hybridized c and f bands weakly antiferromagnetically split
�right panel of Fig. 5�. The main control parameter of the
transition is the relative strength of the f-orbital energy 	� f in
Eq. �13�
 with respect to the antiferromagnetic splittings
	mostly �M in Eq. �13�
.

Above a critical doping �away from the compensated re-
gime�, we only find a single first-order phase transition �see
Fig. 2� directly from a paramagnet at large J /D, with a band
structure similar to panel �c� in Fig. 5 unfolded in the whole
Brillouin zone, to an antiferromagnet with a band structure
similar to panel �b� in Fig. 5. In other words, this phase
transition is accompanied by a drastic reconstruction of the
Fermi surface.

IV. FERMI-SURFACE RECONSTRUCTION
VS MAGNETISM

The variational phase diagram �Fig. 1� shows that the on-
set of magnetism is not necessarily accompanied by a Fermi-
surface reconstruction. Vice versa, one could speculate that
the latter might not require magnetism, which would be the
case if the Fermi-surface change were caused by the
f-electron localization.9 This aspect makes worth investigat-
ing the properties of the variational wave function �2� pre-
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1

0.80.60.40.2

m

J/D

nc = 0.92

0

0.2

0.4

0.6

0.8

1

0.60.40.2

m

J/D

nc = 0.7

(a) (b)

FIG. 2. �Color online� The magnetic order parameter as a func-
tion of J /D for nc=0.92 �left panel� and 0.7 �right panel�. Notice
that for nc=0.92 the order parameter grows continuously below a
critical J /D�0.6—second-order phase transition—until at J /D
�0.36 it jumps abruptly—first-order transition. For nc=0.7 only a
first-order transition with a jump from zero to a finite value of the
order parameter is observed.
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venting antiferromagnetism, which amounts to assuming that
��n�R� in Eq. �3� is independent of R and ��0� is a paramag-
netic Slater determinant.

At first sight, one would not expect to find anything spe-
cial varying J /D in the paramagnetic sector. In fact, we pre-
viously mentioned that the change of the Fermi surface
within the magnetic phase reflects essentially the change of
the band structure, which, in turn, depends variationally only
on the value of the f-orbital energy with respect to the mag-
netic splitting � f and 2M in Eq. �13�, respectively. Therefore,
without magnetism, i.e., M =0, the topology of the band
structure must remain invariant whatever J /D�0 is as we
indeed find. Nevertheless, even in this case, we do observe a
very weak first-order phase transition for values of J /D
slightly smaller than those at which the first-order transition
occurs when we allow for magnetism as shown by the be-
havior of the variational energy in Fig. 6. Remarkably, at this
transition the momentum-dependent spectral function of the
conduction electrons at the chemical potential changes
abruptly, see Fig. 7. For J /D above the critical value, the
Fermi surface includes the f electrons, while below it does
not, which is exactly as we find when magnetism is present.
However, this change occurs now not because the band
structure is modified but because the spectral weight of the
conduction electrons at the Fermi energy changes discontinu-
ously. Indeed, looking carefully at the momentum distribu-
tion in Fig. 7�a�, one can distinguish two sheets of the Fermi
surface—a small one, which corresponds to the noninteract-

ing conduction-electron Fermi surface and a large one that
includes also the f electrons. Across the transition, it is the
relative weight of these two sheets that changes discontinu-
ously. We believe that this must be regarded as a manifesta-
tion of an f localization or, better, of an orbital-selective
localization as proposed in Refs. 17 and 18. This result also
demonstrates that the rearrangement of the Fermi surface ob-
served along the first-order line in the phase diagram �Fig. 1�
is caused by the f-electron orbital-selective localization
rather than by magnetism.

Inspection of the behavior of the average Kondo exchange
and hopping �Fig. 8� shows that the “localized” phase has a
better conduction-electron hopping energy, while the “delo-
calized” one has a better Kondo exchange. This suggests that
the abrupt change of the Fermi surface is primarily a conse-
quence of the competition between the conduction-electron
band energy and the Kondo exchange, and not of the com-
monly invoked competition between Kondo and RKKY in-
teractions.

In light of these results, the transition lines in the phase
diagram also �Fig. 1� assume a different meaning. The first-
order line that separates the paramagnet from the antiferro-
magnet is primarily due to the f localization with magnetism
being just its by product. On the contrary, the second-order
line close to the compensated regime is more likely to be
interpreted as a Stoner’s instability of the paramagnetic
Fermi liquid driven by the nesting property of the Fermi
surface at nc=1. Across this second-order phase transition,
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k y
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k y

kx

k y

kx

k y

kx

k y

(a) (b) (c) (d) (e)

FIG. 3. �Color online� The conduction-electron spectral function at the chemical potential for a two-dimensional square lattice. Panels �a�,
�b�, and �c� show the evolution of the spectral function A�k� at the chemical potential for nc=0.92 in the paramagnetic phase �a� with
J /D=0.8, right after the second-order transition, �b� with J /D=0.4, and finally below the first-order transition �c� with J /D=0.16. Panels �d�
and �e� show the same evolution with nc=0.7 where there is only the first-order transition.
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FIG. 4. �Color online� Evolution of the band structure within the magnetic Brillouin zone of the optimized variational Hamiltonian �13�
for nc=0.92 as a function of J /D and across the first-order transition. Left panel: J /D=0.2; right one: J /D=0.36.
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the Fermi surface changes smoothly following the spin split-
ting of the bands.

V. METAMAGNETISM

Another indirect signal of the f localization can be found
by studying the behavior of the paramagnet in the presence
of a uniform magnetic field. Indeed, if the f orbitals are close
to Mott localization, they are also very prompt to order mag-
netically. Let alone, they would prefer some magnetic order
along with the structure of the RKKY exchange in our bipar-
tite lattice model not far from half filling the natural candi-
date being a Néel ordering. However, in the presence of a
magnetic field, they could equally prefer to order ferromag-
netically. In other words, it is plausible to foresee that the f

localization could be driven by a weak magnetic field—the
weaker it is, the closer the orbital-selective Mott transition
is—thus, accompanied by a sharp increase in magnetization
�so-called metamagnetism� as well as by a discontinuous
change of the Fermi surface.

This expectation is confirmed by our variational calcula-
tion. In Fig. 9 we show the evolution of the uniform magne-
tization as a function of the applied magnetic field in the
paramagnetic phase at J /D=0.45 and nc=0.88. Indeed, as a
function of the magnetic field, we do find a first-order phase
transition that is accompanied by an abrupt increase in the
magnetization as well as by a discontinuous change in the
conduction-electron Fermi surface, specifically of the major-
ity spin one. In fact, since the critical field is smaller than the
Kondo exchange J, once the f electrons localize and their
spins align with the external field, the effective Zeeman field
felt by the conduction electrons is opposite to the applied
one. Consequently, the Fermi surface of the majority spin
becomes smaller than the minority spin one that is contrary
to the case for external fields below the metamagnetic tran-
sition, which is what we find, although hardly visible in
Fig. 9.

(b)(a)

(c)

ε

(d)

F

ε F

FIG. 5. �Color online� One-dimensional representation of the
different variational band structures in the two magnetic phases
close to nc=1 drawn in the magnetic Brillouin zone. Small J /D
phase: �a� represents nonhybridized c and f bands split by antifer-
romagnetism; and �b� what happens once a small hybridization is
switched on. Large J /D phase: �c� represents nonmagnetic hybrid-
ized c and f bands in the folded Brillouin zone; and �d� what hap-
pens once a small antiferromagnetic order parameter is switched on.
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FIG. 6. �Color online� Variational energy as a function of J /D at
nc=0.8 in the paramagnetic sector. A kink is visible at J /D�0.21.
We note the finite curvature of the energy at low J /D, which, as we
checked, is compatible with second-order perturbation theory.
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FIG. 7. �Color online� Spectral function at the chemical potential for nc=0.8 and J /D �a� above and �b� below the critical value.
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VI. CONCLUSIONS

We have calculated within the Gutzwiller approximation
the phase diagram of the Kondo lattice model as a function
of the conduction electron density and of the Kondo ex-
change J. The different feature of our approach with respect
to earlier ones is that the Gutzwiller projector acts on all the
electronic configurations of each f orbital plus the conduc-
tion state to which it is hybridized. This allows one to in-
clude additional local correlations between f and conduction
electrons, specifically those that favor singlet pairing among
them. Summarizing our variational results, we have found
that: �1� there exists an orbital-selective Mott localization of
the f electrons accompanied by a discontinuous change of
the Fermi surface; �2� away from any nesting instability, this
first-order transition is accompanied by magnetism; �3� on
the contrary, when the conduction-electron Fermi surface is
perfectly or almost perfectly nested, magnetism occurs be-
fore the f localization via a second-order transition with a
continuous change of the Fermi surface; and �4� the
f-electron Mott localization can be also induced by a uni-
form magnetic field, in which case it is revealed by a meta-
magnetic transition at which the magnetization jumps and
the Fermi surface changes discontinuously.

These findings bridge between the cluster dynamical
mean-field theory results of Refs. 17 and 18 and the varia-
tional Monte Carlo ones of Ref. 21, and suggest that generi-
cally, i.e., without nesting, magnetism is a by product of the
f-electron Mott localization rather than the outcome of the
competition between Kondo screening and RKKY interac-
tion. We must mention that the weak first-order character of
the Mott transition that we find might be a spurious outcome
of the variational procedure so that we cannot exclude that in
reality such a transition is continuous.

The question we cannot address, since ours is a varia-
tional approach for the ground state, concerns the anomalous
thermodynamic behavior observed around the magnetic tran-
sition. In other words, we cannot establish whether such a
behavior is associated with the incipient magnetism16 or is
just a consequence of the f-electron localization10,11 or better
of the orbital-selective Mott localization.12,13,18,40
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APPENDIX: THE GUTZWILLER APPROXIMATION
IN DETAIL

In this Appendix we present some technical details of the
method that we have employed, which simplify considerably
all calculations. We start by the definition of the Gutzwiller
wave function �2� with the general Gutzwiller operator PR of
Eq. �3�. We assume that the average value of the local single-
particle density-matrix operator, CR� in Eq. �7�, on the un-
correlated Slater determinant wave function �0 is diagonal
in terms of the operators d1R�

† and d2R�
† , which are related by

a unitary transformation to the original ones, cR�
† and fR�

† . In
other words, for a ,b=1,2,

��0�daR�
† dbR���0� = ab��naR�

0 , �A1�

where 0	naR�
0 	1 are the eigenvalues of CR�. We specify

PR to be of the form as in Eq. �3�, namely,

PR = �
�n

��n�R���,R��n,R� , �A2�

where the states �� ,R� are written in the original c-f basis
and contain only one f electron while, by assumption, �n ,R�
are Fock states in the natural basis, namely, in terms of d1d2.
In other words, and dropping for simplicity the site label R,
a generic state �n� is identified by the occupation numbers
na�=0, 1; a=1, 2; and �= ↑ ,↓ and has the explicit expres-
sion

�n� = �d1↑
† �n1↑�d1↓

† �n1↓�d2↑
† �n2↑�d2↓

† �n2↓�0� .

We introduce the uncorrelated occupation-probability matrix
P0 with elements

Pnm
0 � ��0��m��n���0� = nmPn

0, �A3�

where
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FIG. 8. �Color online� Behavior of the average Kondo exchange,
K /D, and hopping, T /D �in units of D, half the conduction
bandwidth�.
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Pn
0 = �

a=1,2
�

�=↑,↓
�na�

0 �na��1 − na�
0 �1−na�. �A4�

We also introduce the matrix representation of the operators
da� and da�

† , namely,

da� → �da��nm = �n�da��m� ,

da�
† → �da�

† �nm = �n�da�
† �m� = ��m�da��n���,

and assume that the variational parameters ��n in Eq. �A2�
are the elements of a matrix �. With the above definitions,
the two conditions 	Eqs. �5� and �6�
 that we impose, and
which allow for an analytical treatment in infinite-
coordination lattices, become23

��0�P†P��0� = Tr�P0�†�� = �
�n

Pn
0�n�

† ��n = 1, �A5�

��0�P†Pda�
† db���0� = Tr�P0�†�da�

† db��

= �
�nm

Pn
0�n�

† ��m�m�da�
† db��n�

= ��0�da�
† db���0� = ab��na�

0 .

�A6�

If Eqs. �A5� and �A6� are satisfied, then the average value of
any local operator O in infinite-coordination lattices is23,35

���O��� = ��0�P†OP��0� = Tr�P0�†O��

= �
n���

Pn
0�n�

† O������n, �A7�

where O is a matrix with elements

O��� = ���O���� .

In the mixed original-natural basis representation, the proper
definition of the Z factors in Eqs. �9� and �10� changes into

��0�P†c�
†Pd1���0� = Zc1���0�d1�

† d1���0�

+ Zc2���0�d2�
† d1���0� = Zc1�n1�

0 ,

�A8�

��0�P†c�
†Pd2���0� = Zc1���0�d1�

† d2���0�

+ Zc2���0�d2�
† d2���0� = Zc2�n2�

0 .

�A9�

In other words, when calculating the average hopping, the
operator c�

† effectively transforms into

c�
† → Zc1�d1�

† + Zc2�d2�
† . �A10�

1. Explicit formulas and connection with slave-boson
mean-field theory

To further simplify the calculation, we introduce a new
matrix in the mixed basis representation,

� = ��P0, �A11�

with elements

��,n = ��n
�Pn

0. �A12�

As we shall see, ��n corresponds to the slave-boson saddle-
point value within the multiband extension of the Kotliar-
Ruckenstein mean-field scheme recently introduced by Lech-
ermann and coworkers,41 which they named as rotationally
invariant slave-boson formalism. By means of the definition
�A11� the first condition �5� becomes

Tr��†�� = �
�n

�n�
† ��n = 1,

which coincides with the saddle-point value of Eq. �28� in
Ref. 41. The other condition 	Eq. �A6�
 becomes

Tr��P0�†�� 1

P0da�
† db�� = ��0�da�

† db���0�

= �
�nm

� Pn
0

Pm
0 �n�

† ��m�m�da�
† db��n�

= ab��na�
0 , �A13�

which is apparently different from the saddle-point value of
Eq. �29� in Ref. 41, which reads

Tr��†�da�
† db�� = �

�nm

�n�
† ��m�m�da�

† db��n� = ��0�da�
† db���0� .

�A14�

Therefore the equivalence between the rotationally invariant
slave-boson formalism and the multiband Gutzwiller ap-
proximation is not so immediate as claimed recently by
Bünemann and Gebhard.42 Indeed the proof given by these
authors suffered by a flaw,43 even though, as we are going to
show, the final conclusion seems to be right. In fact, we note
that the two Fock states �n� and �m� in Eq. �A13� differ only
because �n� has the orbital b with spin � occupied but orbital
a with spin � empty, while it is vice versa for �m�, so that

� Pn
0

Pm
0 =�nb�

0 �1 − na�
0 �

�1 − nb�
0 �na�

0 ,

hence Eq. �A13� is actually equal to

�nb�
0 �1 − na�

0 �
�1 − nb�

0 �na�
0 �

�nm

�n�
† ��m�m�da�

† db��n� = ab��na�
0 .

Because of ab�� on the right-hand side this equation is
equivalent to Eq. �A14� provided that nb�

0 �0 and na�
0 �1.

Therefore, if the average value of the single-particle density
matrix on the uncorrelated wave function ��0� has eigenval-
ues of neither 0 nor 1, the conditions �A5� and �A6� are
equivalent to impose,

Tr��†�� = 1, �A15�

Tr��†�da�
† db�� = ��0�da�

† db���0� = ab��na�
0 , �A16�

which indeed coincide with Eqs. �28� and �29� in Ref. 41 that
are specialized to the natural orbital basis and evaluated at
the saddle point.
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In terms of �, the average of the local operator O 	Eq.
�A7�
 becomes

���O��� = Tr��†O�� , �A17�

which coincide with Eq. �47� in Ref. 41 at the saddle point.
Finally we need to evaluate Zc1� and Zc2� of Eqs. �A8� and
�A9�. We find that, for a=1, 2,

Zca� =
1

na�
0 Tr��P0�†c�

†�� 1

P0da��
=

1

na�
0 �

���nm

� Pn
0

Pm
0 �n�

† ���c�
† �������m�m�da��n�

=
1

�na�
0 �1 − na�

0 �
�

���nm

�n�
† ���c�

† �������m�m�da��n� ,

�A18�

which are analogous to those proposed by Lechermann and
coworkers41 as shown by Bünemann and Gebhard.42

2. Variational energy

The average value of the Hamiltonian �1� is the sum of
two terms—the average of the hopping H0 plus that of the
Kondo exchange HJ. The latter is a purely local term; hence,
provided Eqs. �A15� and �A16� are verified and in infinite-
coordination lattices, it can be written through Eq. �A17� as
�we reintroduce the site label R�

���H j��� = J�
R

Tr	�†�R�S fR · ScR��R�
 . �A19�

A way to proceed is to use as variational parameters the
matrices ��R� and the naR�

0 ’s, which are related to each other
by the conditions �A15� and �A16�. Then, the Slater determi-
nant ��0� must be the one that minimizes the average value
of the hopping, which is, through Eqs. �A10� and �A18�,

���H0��� = − t �
�RR���

�
a,b=1

2

	Zca��R�Zcb�
� �R��

���0�daR�
† dbR����0� + c.c.
 , �A20�

under the constraint that the single-particle density matrix
has eigenvalues naR�

0 . One readily realizes that the ��0� that
fulfills such a property is actually the ground state of the
following variational Hamiltonian:

H� = − t �
�RR���

�
a,b=1

2

	Zca��R�Zcb�
� �R��daR�

† dbR�� + H.c.


− �
R

�
a,b=1

2

�
�

	�ab��R��daR�
† dbR� − abnaR�

0 � + H.c.
 ,

�A21�

where the Lagrange multipliers �ab��R� are those that maxi-
mize the ground-state energy, so that

���H0��� = ��0�H���0� . �A22�

Once this task has been accomplished, one needs to mini-
mize the variational energy per site,

Evar =
1

N
��0�H���0� + J�

R
Tr	�†�R�S fR · ScR��R�
 ,

�A23�

with respect to ��R� and naR�
0 that fulfill Eqs. �A15� and

�A16�.

3. Technical remarks

In order to parametrize the variational matrix ��R� �in
what follows we assume a generic multiband Hamiltonian�,
one can introduce a local Hamiltonian hR that acts on all
possible local electronic configuration and define

��R�†��R� =
e−�hR

�R
, �A24�

where

�R = Tr�e−�hR� ,

is the local partition function and 1 /� is a fictitious tempera-
ture. With this definition, the condition �A16� becomes

Cab�R� �
1

�R
Tr�e−�hRcaR

† cbR� = ��0�caR
† cbR��0� ,

�A25�

where a and b label both spin and orbitals. Therefore, the
zero-temperature average value of the single-particle density
matrix on ��0� must coincide with its thermal average with
the local Hamiltonian hR. Given hR, one calculates Cab�R�
	Eq. �A25�
, which can be diagonalized by providing the
definition of the natural basis,

1

�R
Tr�e−�hRdaR

† dbR� = abnaR. �A26�

In terms of hR,

��R� = UR
e−�hR/2

��R

, �A27�

with UR as a unitary matrix. The expressions of the Z renor-
malization factors are then obtained through

1

�R
Tr�e−�/2hRUR

† caR
† URe−�/2hRdbR� = Zab�R��nbR�1 − nbR� .

�A28�

We found that it is more convenient to use variational param-
eters instead of the matrix elements of ��R�, those of the
local Hamiltonian hR, and of the unitary matrix UR. In the
case of a paramagnetic wave function that does not break
translational symmetry, hR and UR are independent of R. On
the contrary, for antiferromagnetic wave functions on a bi-
partite lattice, going from one sublattice to the other, the role
of spin ↑�↓� is interchanged with that of spin ↓�↑�.
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